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Abstract

This paper studies information manipulation in a sender/receiver game with many

imperfectly coordinated receivers. An individual receiver wants both to align their

choices with an imperfectly observed state and also to align their individual choices

with the choices made by fellow receivers. The sender is informed about the state

and seeks to prevent the receivers coordinating on it. To prevent coordination, the

sender takes a costly hidden action that influences the receivers’ individual signals.

In equilibrium, the sender is unable to introduce any bias into the signals. But the

manipulation is nonetheless always payo↵-improving for the sender. This is because

the manipulation endogenously reduces the signal precision, making it harder for the

receivers to coordinate. The sender’s gains from manipulation are large when the

fundamentals of the economy are such that (i) the receivers’ signals are intrinsically

(technologically) precise, and (ii) the receivers have a strong preference for coordination.
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1 Introduction

How hard is it to persuade a group of rational decision makers to not coordinate on an

outcome they desire? Can an informed agent with a vested interest in preventing coordination

influence the other decision makers’ beliefs so as to achieve that aim? Even when their

opponents are perfectly rational and understand the persuader’s incentives, and so are well-

placed to neutralise any attempt to manipulate their beliefs?

This paper addresses these questions in the setting of a sender/receiver game with many

imperfectly coordinated receivers. There are a large number of heterogeneously informed

receivers who seek to both (i) make choices that are appropriate for their economic conditions,

in particular to align their choices with an unobserved state of the world, and (ii) make

choices that are similar to those of their fellows, in particular to align their choices with

the population average choices of the other information receivers. This latter feature of

the receivers’ preferences gives a “forecasting-the-forecasts-of-others” or Keynesian “beauty

contest” dimension to their problem, as in Morris and Shin (2002). That is, each individual

is not only concerned with making accurate predictions about the unobserved state of the

world but also making accurate predictions about the choices of their fellows (which may or

may not line up with the state of the world). The setup is such that if the state of the world

was known with certainty, then these individuals would in fact, in equilibrium, coordinate

on their preferred outcome. I then confront these receivers with a single informed sender

who seeks to prevent them from coordinating. The sender is endowed with an information

manipulation technology that allows them to influence the receivers’ signals about the state

at a cost that is increasing in the size of bias that the sender is attempting to introduce.

To keep the model tractable, and as is standard in the literature, I assume quadratic pref-

erences (so that best response functions are linear) and normal priors and signal distributions.

I study equilibria that are linear in the sense that individual strategies are linear functions of

their signals. In equilibrium, the strategies and beliefs of the information receivers and the

information manipulation of the sender must be mutually consistent.

The main results of the paper are as follows. There is a unique (linear) equilibrium

with information manipulation. In this equilibrium, individuals receive information that is

unbiased— i.e., the receivers’ expectations are not influenced by the sender’s manipulation. In

equilibrium, the sender is taking costly actions to manipulate information, but these actions

are internalized and filtered out by the receivers. But despite this lack of bias, the information

manipulation is always payo↵-improving for the sender — even though the sender’s actions

are costly to the sender and yet not delivering any change in the receivers’ expectations. The

sender benefits despite the lack of bias because its manipulation endogenously makes signals

noisier (and indeed endogenously correlated across receivers) and this extra noise interferes

with the receivers’ ability to coordinate on the state.

The sender’s gain from information manipulation is large when the sender is able to
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achieve a large reduction in how responsive the receivers’ actions are to their individual signals

— i.e., if the fundamentals of the economy are such that (i) in the absence of manipulation

receivers’ actions would be highly responsive to their individual signals, but where also (ii) in

the presence of manipulation individuals are not responsive to their individual signals, then

the sender will gain a lot from information manipulation. Roughly speaking, (i) is satisfied

when the intrinsic precision of the receivers’ signals is very high (i.e., when the underlying or

“technological” precision of the signals, absent manipulation, is very high). Similarly, (ii) is

satisfied if either the intrinsic precision of the receivers’ signals is very low or if the receivers

have a strong preference for coordination. In short, (i) and (ii) will be jointly satisfied,

and hence the sender’s gain from information manipulation will be large, when signals are

intrinsically precise and the receivers have a strong preference for coordination.

Strategic information transmission. This paper is related to the large literature on

strategic communication following Crawford and Sobel (1982). As in Kartik, Ottaviani and

Squintani (2007) and Kartik (2009), the sender is endowed with a technology for sending

biased messages at a cost. The fact that the sender’s information manipulation operates

in equilibrium not via the receivers’ posterior expectations but rather via other features

of the posterior distribution, in particular the posterior precision of beliefs, is reminiscent

of the Bayesian persuasion literature following Kamenica and Gentzkow (2011). Several

features of the model distinguish the setup and are crucial for the results. First, instead

of a single information receiver there are many information receivers and moreover they are

playing a coordination game with a “forecasting-the-forecasts-of-others” dimension. Second,

rather than having their own ideal point or desired outcome, the sender is seeking only to

prevent coordination on the state, i.e., the sender is not trying to direct coordination to some

other point — in this sense the sender is somewhat “agnostic” (or perhaps nihilistic) about

outcomes, so long as they inhibit coordination on the state. This also distinguishes the model

from my own previous work (Edmond, 2013, 2015) where the sender is seeking to achieve

coordination on a particular status quo outcome and so is not agnostic.

Section 2 outlines the model. Section 3 reviews the special case of no manipulation where

the model reduces to the setting of Morris and Shin (2002). Section 4 shows that there is

a unique linear equilibrium and explains how the sender’s manipulation a↵ects the precision

of equilibrium beliefs even though it does not introduce bias. Section 5 explains how the

information receivers’ equilibrium response to their signals depends on the key parameters

of the model. Section 6 then explains the sender’s gains (and the receivers’ losses) from

information manipulation.
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2 Model

There is a unit mass of ex ante identical information receivers, indexed by i 2 [0, 1], and a

single sender attempting to influence their beliefs.

Information receivers’ payo↵s. The receivers face a coordination problem — each would

like their action a

i

2 R to be close to the population aggregate action A :=
R 1

0
a

i

di, but

would also like their action a

i

to be close to the true underlying state variable ✓ 2 R (about

which they are imperfectly informed). In particular, each individual chooses a
i

to minimize

the expected value of the quadratic loss

�(a
i

� A)2 + (1� �)(a
i

� ✓)2 (1)

where the parameter � 2 (0, 1) measures the relative strength of the coordination motive. In

the special case where ✓ is known with certainty, the optimal action is

a

i

= �A+ (1� �)✓ (2)

Under certainty, in equilibrium each individual takes action a

i

= A = ✓ and thus in this

special case there is no tension between aligning with ✓ and aligning with the rest of the

population — i.e., in this case, the population is perfectly coordinated on ✓.

Informed sender and information manipulation. The sender knows the value of ✓

and seeks to prevent the receivers from coordinating on it. In particular, the sender obtains

a gross benefit (✓ � A)2 that is increasing in the discrepancy between the aggregate action

A and the state ✓. The sender is endowed with a technology that, in principle, gives it some

influence over the receivers’ beliefs. Knowing ✓, the sender may take a costly action b 2 R
in an attempt to induce the receivers into believing the state is actually y = ✓ + b, i.e., the

term b = y � ✓ is a measure of the bias that the sender is attempting to introduce. This

manipulation incurs a quadratic cost (y � ✓)2. The net payo↵ to the sender is then

V = (✓ � A)2 � (y � ✓)2 (3)

The receivers know the sender’s objective but are imperfectly informed about ✓.

Information receivers’ signals. Each receiver draws a signal

x

i

= y + "

i

= ✓ + b+ "

i

(4)

where the idiosyncratic noise "

i

is IID normal across receivers, independent of ✓, with mean

zero and precision ↵ > 0 (i.e., variance 1/↵). Information receivers have common priors for

✓ given by ✓ = z� ⌘ where the common noise ⌘ is independent of ✓ and normally distributed

3



with mean zero and precision � > 0 (i.e., variance 1/�). In other words, receivers have one

source of information, the prior, that is free of the sender’s influence and another source of

information, the signal x
i

, that is not. While the informativeness of the prior is fixed, the

informativeness of the signal needs to be determined endogenously in equilibrium.

Before characterizing equilibrium outcomes in the general model with information manip-

ulation, I first review equilibrium outcomes when there is no manipulation. This provides a

natural benchmark against which the sender’s technology for manipulation can be evaluated.

3 Morris-Shin benchmark

Suppose the sender cannot manipulate information — i.e., fix b = 0 so that y = ✓. Then

this model reduces to the setting of Morris and Shin (2002). The optimal action of a receiver

with signal x
i

and prior mean z satisfies, in general,

a(x
i

, z) = �E[A(✓, z) | x
i

, z ] + (1� �)E[ ✓ | x
i

, z ] (5)

In this linear-normal setup, each receiver’s posterior beliefs are also normal. In particular,

with y = ✓ a receiver with signal x
i

and prior mean z has posterior mean

E[ ✓ | x
i

, z ] =
↵

↵ + �

x

i

+
�

↵ + �

z (6)

and all receivers have posterior precision ↵ + �.

Linear strategies. Following Morris and Shin, I restrict attention to equilibria in which

individual receivers use linear strategies of the form

a(x
i

, z) = kx

i

+ hz (7)

for some coe�cients k, h to be determined in equilibrium. Since y = ✓ the corresponding

aggregate action is likewise

A(✓, z) = k✓ + hz (8)

Linear equilibrium. Thus, in a linear equilibrium, individual actions satisfy

a(x
i

, z) = �E[A(✓, z) | x
i

, z] + (1� �)E[ ✓ | x
i

, z]

= � (kE[ ✓ | x
i

, z] + hz) + (1� �)E[ ✓ | x
i

, z]

= (�k + 1� �)
↵

↵ + �

x

i

+

✓
(�k + 1� �)

�

↵ + �

+ �h

◆
z (9)
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Equating coe�cients between (7) and (9) allows us to solve for the equilibrium responses to

the signal x
i

and prior mean z. In particular, equating the sums of the coe�cients

k + h = (�k + 1� �) + �h

so that k+h = 1. In short, actions simply have the form a(x
i

, z) = kx

i

+(1� k)z. Moreover

the coe�cient k on the signal x
i

must satisfy the fixed-point condition

k = (�k + 1� �)
↵

↵ + �

(10)

which has the unique solution

k

⇤
MS =

(1� �)↵

(1� �)↵ + �

2 (0, 1) (11)

To interpret this formula, first observe that in the absence of the coordination motive

(� ! 0) this would simply be ↵/(↵ + �) — i.e., the same weight as given to their signal

x

i

in the posterior expectation (6) — that depends only on the intrinsic precision of the

signal relative to that of the prior, ↵/�. Put di↵erently, in the absence of the coordination

motive, the actions a(x
i

, z) = kx

i

+ (1 � k)z would respond to each piece of information in

line with their relative precision. But in the presence of the coordination motive, � > 0, the

e↵ective weight on the signal x
i

gets reduced from ↵ to (1� �)↵ with the e↵ective weight on

the prior mean z correspondingly increased. Intuitively, in the presence of the coordination

motive the common prior gets more weight than its intrinsic precision would warrant. If the

coordination motive is very strong (� ! 1), each receiver completely ignores their individual

signal even if it is intrinsically much more precise than the prior.

With this benchmark in mind, I now return to the general model with manipulation.

4 Equilibrium with information manipulation

Now suppose the sender is able to manipulate information. In this setting the equilibrium

fixed point problem is more complicated because the receivers’ beliefs and the sender’s in-

centives to manipulate information need to be mutually consistent.

As in Morris and Shin, I again restrict attention to linear strategies of the form

a(x
i

, z) = kx

i

+ hz (12)

for some coe�cients k, h to be determined. Hence as a function of the sender’s y the corre-

sponding aggregate action is now

A(y, z) = ky + hz (13)
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Sender’s manipulation problem. Given an aggregate action of this form, the sender’s

problem is to choose y 2 R to maximize

V (y) = (✓ � ky � hz)2 � (y � ✓)2

The solution to the sender’s problem is

y(✓, z) =
1

1 + k

✓ +
kh

(1 + k)(1� k)
z (14)

Given y(✓, z), the aggregate action will be

A(y(✓, z), z) = ky(✓, z) + hz =
k

1 + k

✓ +
h

(1 + k)(1� k)
z (15)

The second-order condition for the sender’s problem requires 1 � k

2
> 0. Hence in what

follows I will restrict attention to k 2 (�1,+1).

Information receivers’ actions. The optimal action of an individual receiver is again

given by (5), above, so that in any linear equilibrium

a(x
i

, z) = �

✓
k

1 + k

E[ ✓ | x
i

, z ] +
h

(1 + k)(1� k)
z

◆
+ (1� �)E[ ✓ | x

i

, z ]

=

✓
1� �

1 + k

◆
E[ ✓ | x

i

, z ] +
�

1 + k

h

1� k

z (16)

Thus the main task is to calculate the conditional expectation E[ ✓ | x
i

, z ] when the sender

engages in manipulation. Once that conditional expectation is in hand, the equilibrium

problem can be solved by matching coe�cients as before.

Information receivers’ signal-extraction problem. Given the sender’s policy (14),

receivers have endogenous signals of the form

x

i

= y(✓, z) + "

i

=
1

1 + k

✓ +
kh

(1 + k)(1� k)
z + "

i

And since the prior is z = ✓ + ⌘ this is equivalently

x

i

=
1� k + kh

(1� k)(1 + k)
✓ +

kh

(1 + k)(1� k)
⌘ + "

i

(17)

The implications of this form of signal become transparent when we observe that:

Lemma 1. In any linear equilibrium the coe�cients k, h sum to k + h = 1.
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Unbiased signals. Plugging h = 1� k into (17) and simplifying then gives

x

i

= ✓ +
k

1 + k

⌘ + "

i

(18)

This implies:

Proposition 1. In any linear equilibrium the endogenous signals x
i

are unbiased for ✓. The
endogenous noise

⇠

i

:=
k

1 + k

⌘ + "

i

(19)

has mean zero and precision �(k)  ↵ given by

�(k) =
↵�

↵�(k) + �

, �(k) :=

✓
k

1 + k

◆2

� 0 (20)

In short, the endogenous signals are unbiased for ✓ but are more noisy than their intrinsic

precision warrants, �(k)  ↵.

Sender’s manipulation. Although the private signals x
i

are unbiased for ✓ in equilibrium,

this does notmean that the sender is not manipulating information. In any linear equilibrium,

the sender chooses

y(✓, z) =
1

1 + k

✓ +
k

1 + k

z

and hence is taking the action

b(✓, z) = y(✓, z)� ✓ =
k

1 + k

(z � ✓) =
k

1 + k

⌘ (21)

and thus, in general, the sender is indeed actively manipulating information in a state-

contingent manner — it is just that the receivers understand and internalize the sender’s

incentives so that their individual signals remain unbiased in equilibrium.

Aggregate action. With A(y, z) = ky + (1� k)z and y(✓, z) = (✓ + kz)/(1 + k) we then

have that in any linear equilibrium the aggregate action is

A(y(✓, z), z) = ✓ +
1

1 + k

(z � ✓) = ✓ +
1

1 + k

⌘ (22)

As in the Morris-Shin benchmark, the common prior z acts as a form of “aggregate noise”

that in general impedes the receivers’ from coordinating on the true state ✓. Notice that for

given z � ✓ the magnitude of the discrepancy between the aggregate action and ✓ will be

greater the smaller is the response coe�cient k. Put di↵erently, the more receivers respond

to z, the larger will be the variation of the aggregate action around ✓. In the knife-edge case

that the true ✓ coincides with z, the sender does not actively manipulate information (b = 0,

so y = ✓) and the aggregate action hits ✓ exactly.
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Endogenous noise and cross-sectional correlation. While the sender’s manipulation

does not lead to any bias in x

i

in equilibrium, it generally makes the endogenous private

signals x
i

both less precise and more correlated in the cross-section of information receivers.

In the Morris-Shin benchmark the exogenous idiosyncratic noise "

i

has precision ↵ and is

IID across receivers (i.e., the signals x
i

are conditionally independent). But with the sender’s

manipulation, the endogenous noise ⇠

i

is no longer purely idiosyncratic, it also contains the

common term b(✓, z) from the sender’s action, and this both reduces the precision, from ↵

to �(k), and makes the noise ⇠
i

correlated in the cross-section of receivers (i.e., the signals x
i

are no longer conditionally independent). More specifically, conditional on ✓ the correlation

between any two individuals i and j is given by

Corr[x
i

, x

j

| ✓] = Corr[⇠
i

, ⇠

j

] =
↵�(k)

↵�(k) + �

=: ⇢(k) 2 [0, 1) (23)

where �(k) � 0 as in (20) above.

Notice that if k = 0, receivers do not react to their signals x
i

and the sender finds it optimal

to not engage in any costly manipulation — i.e., b = 0 so that y = ✓. Hence in this situation

the signals x
i

do not depend on ⌘, the correlation ⇢(k) is zero, and the precision �(k) = ↵.

But this will generally not be an equilibrium — because if the sender does not manipulate,

then information receivers will want to give their signals at least some consideration and

react to them at least a little, k > 0, and hence the sender will in turn not refrain from

manipulation and the receivers’ signals will be at least somewhat less precise than ↵.

We now need to go on and solve for k in equilibrium.

Linear equilibrium. To solve the equilibrium problem, observe that each receiver has two

pieces of information, both unbiased for ✓: (i) x
i

with endogenous precision �(k), and (ii) z

with precision �. Since both are normally distributed, the posterior expectation of ✓ is just

E[ ✓ | x
i

, z ] =
�(k)

�(k) + �

x

i

+
�

�(k) + �

z (24)

where �(k) is as defined in (20) above. Likewise, the posterior precision of ✓ is

1/Var[ ✓ | x
i

, z ] = �(k) + � (25)

(i.e., less than the posterior precision ↵ + � in the Morris-Shin benchmark). Now plugging

the expression (24) into (16) and using k + h = 1 gives

a(x
i

, z) =

✓
1� �

1 + k

◆
E[ ✓ | x

i

, z ] +
�

1 + k

z

=

✓
1� �

1 + k

◆
�(k)

�(k) + �

x

i

+

✓
1� �

1 + k

◆✓
�

�(k) + �

+
�

1 + k

◆
z (26)
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the coe�cients of which indeed sum to one. Thus in a linear equilibrium the coe�cient k on

the signals x
i

satisfies the fixed point condition

k =

✓
1� �

1 + k

◆
�(k)

�(k) + �

To simplify the characterization of solutions to this problem, it’s helpful to write this as

L(k) = R(k) (27)

where

L(k) := k

�(k) + �

�(k)
= k

✓
↵ + �

↵

+ �(k)

◆
(28)

and

R(k) := 1� �

1 + k

(29)

All linear equilibria are solutions of the fixed point problem (27). In fact:

Proposition 2.

(i) The fixed point problem L(k) = R(k) has a unique solution k

⇤ 2 (0, 1). Hence there is
a unique linear equilibrium.

(ii) In equilibrium, individual receivers respond less to their signals than in the benchmark
with no information manipulation, k⇤

< k

⇤
MS.

To see the first part of this, observe that R0(k) > 0 and R

00(k) < 0 with R(0) = 1�� > 0

and R(1) = 1 � �/2 < 1 while L

0(k) > 1 with L(0) = 0 and L(1) > 1. Hence by the

intermediate value theorem there is a unique k⇤ 2 (0, 1) that solves L(k) = R(k). This leaves

open the possibility that there is another, negative, solution. Any such solution must be less

than �
p
1� �, since until that point it is clearly the case that R(k) > k > L(k). The tricky

issue is whether the function R(k) can catch up (and pass) the function L(k) as k ! �1.

While R(k) and L(k) both diverge to �1 as k ! �1, a l’Hôpital’s rule calculation shows

that R(k)/L(k) ! 0+ so that R(k) is always greater than L(k). Thus there is in fact no

negative solution.1 Figure 1 illustrates.

1Alternatively, the fixed point problem L(k) = R(k) can be rewritten as a cubic equation in k. And one
can show that the discriminant of this cubic is negative, which implies that the cubic has one real root and
a pair of complex roots. Only the real root is a candidate for an equilibrium. The argument in the text then
establishes that the real root is in (0, 1).
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�� 1

coe�cient k on individual signal xi

Figure 1: Constructing the unique linear equilibrium.

In equilibrium, the coe�cient k on individual signals xi must lie at the intersection of the red R(k) and blue L(k) curves. An
application of the intermediate value theorem shows that there is a positive solution k

⇤. Both R(k) and L(k) diverge to �1 as
k ! �1, but an application of l’Hôpital’s rule shows that R(k) > L(k) for all k < 0, so there is no negative solution.

Moreover the equilibrium k

⇤ is strictly less than its counterpart Morris-Shin benchmark

value k

⇤
MS. Intuitively, this is because with manipulation, each receiver endogenously gives

less weight to their signal x
i

when forming their posterior expectation E[ ✓ | x
i

, z ] and since

it is common knowledge that each individual gives less weight to x

i

in their beliefs about ✓,

in equilibrium each individual’s actions also respond less to that information.

To summarize, there is a unique coe�cient k⇤ that renders the beliefs of the information

receivers and the manipulation of the sender mutually consistent. In this equilibrium, indi-

viduals take actions a(x
i

, z) = k

⇤
x

i

+ (1 � k

⇤)z, that respond less to their signal x
i

than in

the Morris-Shin benchmark without information manipulation, k⇤
< k

⇤
MS. The precision of

the signals is �(k⇤) < ↵ with cross-sectional correlation ⇢(k⇤) 2 (0, 1) — i.e., likewise the

receivers’ signals are both less precise and more correlated across individuals than in the

Morris-Shin benchmark.

So we know that receivers are less responsive to their signals, k⇤
< k

⇤
MS. But how much

less responsive are they? To figure this out, we need to know how the equilibrium response

k

⇤ varies with the underlying parameters of the economy.

5 Comparative statics of the response coe�cient k

⇤

The equilibrium response k⇤ to an individual signal x
i

is a function of two parameters: (i) the

intrinsic (underlying, technological) precision of the signal relative to the prior, ↵/�, and (ii)

the receivers’ preference for coordination, �. Observe that only the ratio ↵/� matters for the
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equilibrium, not the levels themselves. To simplify calculations, let ! := ↵/(↵ + �) denote

the intrinsic relative precision of the signal, i.e., the weight that an individual’s posterior for

✓ would give to their signal x
i

absent manipulation.

The fixed point problem (27) can then be written in the form L(k ;!) = R(k ; �) and an

application of the implicit function theorem gives:

Proposition 3. The equilibrium response k

⇤ to an individual signal x
i

is:

(i) Strictly increasing in ! for all � 2 (0, 1) with lim
!!0 k

⇤ = 0 and lim
!!1 k

⇤ =: k(�) <p
1� � < 1.

(ii) Strictly decreasing in � for all ! 2 (0, 1) with lim
�!0 k

⇤ =: k(!) < ! < 1 and
lim

�!1 k
⇤ = 0.

Intuitively, as the intrinsic relative precision ! rises, receivers indeed respond more to their

individual signal x
i

, and, as the coordination motive becomes stronger, receivers respond more

to their common prior z. These e↵ects are qualitatively exactly the same as in the Morris-

Shin benchmark where the sender cannot manipulate information. But, importantly, the

sender’s ability to manipulate information bounds the willingness of the receivers to respond

to their individual signals. To see this e↵ect, observe that in the Morris-Shin benchmark the

coe�cient on x

i

, from (11), can be written

k

⇤
MS =

(1� �)!

(1� �)! + (1� !)
2 (0, 1) (30)

hence

lim
!!1

k

⇤
MS = 1, and lim

�!0
k

⇤
MS = ! (31)

From part (i) of Proposition 3 we have that as the intrinsic relative precision becomes arbi-

trarily high, ! ! 1, the equilibrium coe�cient k⇤ ! k(�) <
p
1� � < 1, i.e., less that the

counterpart limit in the Morris-Shin benchmark. In other words, in the benchmark setting

without manipulation ! ! 1 implies receivers respond only to their signals whereas with

manipulation the response to x

i

is bounded below
p
1� � < 1 precisely because the sender’s

manipulation makes the signals less precise. For example, if ! ! 1 and � = 0.75 then we

know k

⇤
<

p
1� 0.75 = 0.5 with manipulation but k⇤

MS = 1 absent manipulation, so in this

case the gap between k

⇤ and k

⇤
MS is at least 0.5. Moreover, the bound

p
1� � is tighter the

more important is the coordination motive. For example, if ! ! 1 but � = 0.99 then we

know k

⇤
<

p
1� 0.99 = 0.1 with manipulation but k⇤

MS = 1 absent manipulation, so in this

case the gap between k

⇤ and k

⇤
MS is at least 0.9.

Similarly, from part (ii) of Proposition 3 we have that as the coordination motive fades

in importance, � ! 0, the equilibrium coe�cient k

⇤ ! k(!) < ! < 1, i.e., less than the

counterpart limit in the Morris-Shin benchmark. In other words, in the benchmark setting

without manipulation � ! 0 implies receivers respond to their signals in accordance with

11



their relative precision ! whereas with manipulation the response is bounded below !, again

because the signals are endogenously less precise.
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Figure 2: Equilibrium response k

⇤(!,�) to individual signal x
i

.

An individual’s equilibrium response k

⇤(!,�) to their signal xi is strictly increasing in the intrinsic relative precision ! and
strictly decreasing in the preference for coordination �. Moreover, individuals always respond less to their signal than they
would in the absence of manipulation, k⇤(!,�) < k

⇤
MS(!,�) for all ! 2 (0, 1) and � 2 (0, 1). In particular, the limits k(!) =

k

⇤(!, 0) < k

⇤
MS(!, 0) = ! and k(�) = k

⇤(1,�) < k

⇤
MS(1,�) = 1.

These comparative statics are illustrated in Figure 2, which shows both k

⇤ (in red) and

k

⇤
MS (in blue) as functions of ! for � = 0 and some � 2 (0, 1). Consider first the case of some

� 2 (0, 1). We see that both k

⇤ and k

⇤
MS are increasing in ! and that as ! ! 1 we have

k

⇤
MS ! 1 but k⇤ ! k(�) < 1 so that when ! is high an individual responds distinctly less to

their signal than they would in the absence of information manipulation. By contrast, when

! ! 0 we have both k

⇤
MS ! 0 and k

⇤ ! 0 so that when ! is low an individual naturally

does not respond to their signal at all. In other words, it is in high ! situations where

the manipulation is likely to be substantially a↵ecting individual behavior. Now consider

the case of no coordination motive, � ! 0, so that in the absence of manipulation we

would simply have individuals responding in line with the intrinsic relative precision of their

signals, k⇤
MS = ! (i.e., the 45�-line in Figure 2). The curve labelled k(!) shows the limit of no

coordination motive when there is manipulation, lim
�!0 k

⇤ =: k(!), again always less than

the Morris-Shin counterpart.

To summarize, in circumstances where receivers are fundamentally inclined to not respond

to their signals, e.g., when ! is very low, the equilibrium coe�cient k⇤ will itself be both low

and fairly close to the Morris-Shin benchmark value k⇤
MS. After all, if the signal is intrinsically

uninformative relative to the prior, the sender’s manipulation does not have much to work

12



with. But in circumstances where receivers are fundamentally inclined to respond to their

signals, e.g., when ! is very high, the equilibrium coe�cient k⇤ can be substantially less than

the Morris-Shin benchmark, especially when � is high.

Graphical derivation. To derive the comparative statics graphically, observe that ! only

matters for the L(k ; !) schedule. As shown in the left panel of Figure 3, as ! increases,

the L(k ; !) schedule rotates clockwise while the R(k ; �) schedule is unchanged. Hence k

⇤

is strictly increasing in !. At the extreme of ! = 0, the individual signals are uninformative

(regardless of manipulation) and so individuals do not respond to them, k⇤ = 0. At the other

extreme of ! = 1, the limiting coe�cient k(�) solves

k(1 + �(k)) = R(k ; �)

and so, as illustrated in the left panel, this limiting coe�cient k(�) is strictly less thanp
1� � < 1. Similarly as shown in the right panel of Figure 3, as � increases, the R(k ; �)

schedule shifts down while the L(k ; !) schedule is unchanged. Hence k⇤ is strictly decreasing

in �. Since R(k ; 0) = 1 for all k the limiting coe�cient k(!) solves

k

✓
1

!

+ �(k)

◆
= 1

and, since �(k) > 0 for any k 2 (0, 1), the solution k(!) must be strictly less than !. At the

other extreme of � = 1, we have R(k ; 1) = k/(1 + k) which intersects L(k ; !) at the origin.

�1 �0.5 0 0.5 1

� = 0

� = 0.5

� = 1

L(k ;!)

(b) coordination � shifts R(k ; �)

�1 �0.5 0 0.5 1
�1

�0.5

0

0.5

1

! = 0 ! = 1

R(k ;�)

(a) relative precision ! shifts L(k ; !)

Figure 3: Deriving the comparative statics of k⇤(!,�)

Panel (a) shows that as the intrinsic relative precision ! := ↵/(↵+�) increases, the L(k ; !) schedule rotates clockwise while the
R(k ; �) schedule is unchanged. Hence k

⇤(!,�) is increasing in !. Panel (b) shows that as the coordination motive � increases,
the R(k ; �) schedule shifts down while the L(k ; !) schedule is unchanged. Hence k

⇤(!,�) is decreasing in �.
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Comparative statics of equilibrium beliefs. With the comparative statics of k

⇤ in

hand, we can now work out the implications for equilibrium beliefs. To this end, let ⇢(k ; !)

denote the cross-sectional correlation of receiver signals for given k and intrinsic relative

precision ! and let w(k ; !) likewise denote the weight on the receiver signal x
i

in their

posterior expectation E[ ✓ | x
i

, z]. From (23) and (24), these can be written

⇢(k ; !) :=
!�(k)

!�(k) + 1� !

(32)

and

w(k ; !) :=
!

!�(k) + 1
(33)

and then let ⇢⇤(!,�) := ⇢(k⇤(!,�); !) and w

⇤(!,�) := w(k⇤(!,�); !) denote the equilibrium

correlation and equilibrium weight2 on signals as functions of the underlying parameters !,�.

In this notation, a receiver’s equilibrium posterior expectation is

E[ ✓ | x
i

, z] = w

⇤(!,�)x
i

+ (1� w

⇤(!,�))z

Some straightforward calculations then give:

Proposition 4.

(i) The correlation ⇢

⇤ is (a) strictly increasing in ! with lim
!!0 ⇢

⇤ = 0 and lim
!!1 ⇢

⇤ = 1
for all � 2 (0, 1), and (b) strictly decreasing in � with lim

�!0 ⇢
⇤ =: ⇢(!) > 0 and

lim
�!1 ⇢

⇤ = 0 for all ! 2 (0, 1).

(ii) The weight w

⇤ is (a) strictly increasing in ! with lim
!!0 w

⇤ = 0 and lim
!!1 w

⇤ =:
w(�) < 1 for all � 2 (0, 1), and (b) strictly increasing in � with lim

�!0 w
⇤ =: w(!) < !

and lim
�!1 w

⇤ = ! for all ! 2 (0, 1).

These e↵ects are illustrated in Figure 4. The left panel shows the equilibrium correlation

⇢

⇤ as a function of the intrinsic relative precision ! for various levels of the preference for

coordination �. For given �, the equilibrium correlation is strictly increasing in ! reaching

the case of perfectly correlated signals as ! ! 1. Intuitively, as signals become intrinsically

precise, receivers respond more to them, k⇤ is higher, and hence via the common term b =

k

⇤
/(1+k

⇤)⌘ introduced by the sender’s manipulation, their signals are more correlated (even

conditional on ✓). Similarly, a higher � reduces k

⇤ so that signals are both endogenously

more precise (driving the precision up towards its benchmark level ↵) and less correlated

across individuals. By contrast, in the Morris-Shin benchmark, conditional on the true ✓,

signals would be uncorrelated for all !,�.

2I focus on the equilibrium weight w⇤(!,�) rather than, say, the equilibrium posterior precision
�(k⇤(!,�)) + �, because the latter depends on both the relative intrinsic precision ↵/� and total intrin-
sic precision ↵+ �. The weight w⇤(!,�) is the natural counterpart of the parameter ! (both are scale-free)
and comparing the two allows us to see the di↵erences between the intrinsic informativeness of signals and
their equilibrium informativeness on a like-for-like basis.
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Figure 4: Equilibrium correlation ⇢

⇤(!,�) and weight on signals w⇤(!,�).

The left panel shows the equilibrium (conditional) correlation of signals ⇢

⇤(!,�) as a function of the intrinsic relative precision
! and the preference for coordination �. The correlation is larger when the coe�cient k

⇤ is larger and hence the correlation is
increasing in ! and decreasing in �. The right panel shows the equilibrium weight w

⇤(!,�) given to signals in the receivers’
posterior expectations, a scale-free measure of the equilibrium relative precision of signals. In the Morris-Shin benchmark this
would simply be the intrinsic value ! (i.e., the 45�-line). With manipulation, the equilibrium weight is always less than !, is
increasing in ! and increasing in � so that the gap between w

⇤(!,�) and its intrinsic value ! is decreasing in �.

The right panel of Figure 4 likewise shows the equilibrium weight w⇤ as a function of !

for various levels of �. Given the sender’s manipulation, w⇤ is always less than its intrinsic

value ! (i.e., the value it would take in the Morris-Shin benchmark). The equilibrium weight

is strictly increasing in ! and the gap between the equilibrium value w⇤ and its intrinsic value

! is decreasing in the preference for coordination �. When � = 0, this gap is at its largest,

falling as � rises until in the limit as � ! 1 we have w⇤ = ! as in the Morris-Shin benchmark

(i.e., coinciding with the 45�-line in the right panel). Intuitively, as � rises individuals are less

responsive to their signals (i.e., k⇤ falls), and so there is again less contamination of signals

by the common term b = (k⇤
/(1 + k

⇤))⌘ and hence the equilibrium signal precision is closer

to its intrinsic value.

6 E↵ectiveness of information manipulation

So the sender can manipulate information in equilibrium. But is this manipulation e↵ective

in the sense of improving the sender’s payo↵? It could be that the sender is “trapped” into

engaging in costly manipulation that is payo↵-reducing simply because the sender cannot

credibly commit to not use this option. It turns out that this is not the case. In fact,

the sender is made strictly better o↵ by the availability of its technology for manipulating

information — despite the fact that it cannot in equilibrium achieve any bias in signals.
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Sender benefits from information manipulation. The sender’s payo↵s are

V = (✓ � A(y(✓, z), z))2 � (y(✓, z)� ✓)2 (34)

In the Morris-Shin benchmark where the sender cannot manipulate information we have

y = ✓ and since A(✓, z) = k✓ + (1� k)z we can collect terms and simplify to obtain

VMS(k ; ✓, z) := (1� k)2(✓ � z)2 (35)

The greater is k, the lower are the sender’s payo↵s. This is because the greater is k, the more

the aggregate action becomes tightly distributed around the true ✓ — in the limit as k ! 1,

the aggregate action hits ✓ with certainty — and since the sender prefers that the receivers

do not coordinate on ✓, this reduces the sender’s payo↵s.

Similarly, with information manipulation we have A(y, z) = ky+(1�k)z and now y(✓, z) =

(✓ + kz)/(1 + k) so that again collecting terms and simplifying from (34) we get the payo↵s

V (k ; ✓, z) :=

✓
1� k

1 + k

◆
(✓ � z)2 (36)

Thus as in the Morris-Shin benchmark, the greater is k, the lower are the sender’s payo↵s.

Since the state-contingent term (✓� z)2 is common across the two scenarios, we can compare

the sender’s payo↵s by focussing on the multiplicative terms vMS(k) := (1 � k)2 for the

Morris-Shin case and v(k) := (1� k)/(1 + k) for the information manipulation case.3

Now let V

⇤
MS(!,�) denote the sender’s equilibrium payo↵s without information manip-

ulation, namely vMS(k) evaluated at the benchmark k = k

⇤
MS(!,�) from (11), and likewise

let V ⇤(!,�) denote the sender’s equilibrium payo↵s with information manipulation, namely

v(k) evaluated at the k = k

⇤(!,�) implied by (27). We then have:

Proposition 5.

(i) Information manipulation is always payo↵-increasing for the sender, V ⇤
> V

⇤
MS.

(ii) Both V

⇤ and V

⇤
MS are (a) strictly decreasing in ! with lim

!!0 V
⇤
MS = lim

!!0 V
⇤ = 1

and lim
!!1 V

⇤
MS = 0 but lim

!!1 V
⇤ =: V ⇤(�) > 0 for all � 2 (0, 1), and (b) strictly

increasing in � for all ! 2 (0, 1).

(iii) The sender’s gain from manipulation V

⇤ � V

⇤
MS is (a) single-peaked in !, strictly

increasing in ! for all ! < !

⇤(�) and strictly decreasing in ! for all ! > !

⇤(�), with
(b) critical point !⇤(�) strictly increasing in � and satisfying !

⇤(0) > 0 and !

⇤(1) = 1.

3If z = ✓ the (ex post) state-contingent payo↵ of the sender is zero in both cases. In fact, as the policy
b = (k/(1 + k))(z � ✓) from (21) makes clear the sender only actively manipulates information if z 6= ✓. If
z = ✓ then b = 0 and y = ✓. Of course the receivers do not know ✓ and so do not know if z = ✓ and hence
even in this knife-edge state of the world we have k⇤ 2 (0, k⇤MS), signals are endogenously noisier etc.
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Figure 5: Sender benefits from information manipulation.

Information manipulation is strictly payo↵-increasing for the sender, V ⇤(!,�) > V

⇤
MS(!,�). Since the payo↵s are both decreasing

in the coe�cient k on individual signals, from Proposition 3 the sender’s payo↵ is likewise decreasing in the intrinsic relative
precision ! but increasing in the preference for coordination �. The gain from information manipulation V

⇤(!,�)� V

⇤
MS(!,�)

is single-peaked in !, increasing for ! < !

⇤(�) then decreasing for ! > !

⇤(�) with critical point !

⇤(�) increasing in �. The
gain from manipulation is large when signals are intrinsically relatively precise and there is a high preference for coordination.

The key to this result is that receivers’ respond less to their individual signals when

information is manipulated than when it is not, i.e., k⇤
< k

⇤
MS. Intuitively, this is because with

manipulation the signals x
i

are endogenously less precise than in the Morris-Shin benchmark

and hence each individual’s actions are less responsive to their x
i

.

Then knowing k

⇤
< k

⇤
MS and that vMS(k) is strictly decreasing in k, we then have the

inequality (a) vMS(k⇤) > vMS(k⇤
MS). And since 1� k

2
< 1, we know v(k) = (1� k)/(1 + k) >

(1� k)2 = vMS(k) for any k. Hence we also have the inequality (b) v(k⇤) > vMS(k⇤). Putting

inequalities (a) and (b) together then implies that V

⇤(!,�) > V

⇤
MS(!,�) for any ! 2 (0, 1)

and � 2 (0, 1). In short, the sender is always better o↵ with information manipulation.

Since the sender’s payo↵s depend on !,� only via the coe�cient k

⇤ we can then use

Proposition 3 to calculate the comparative statics of V ⇤ and V

⇤
MS with respect to !,�. For

example, consider the e↵ects of changing the intrinsic relative precision !. If ! = 0, then, in

either scenario, information receivers will not respond to their signal, i.e., k⇤ = k

⇤
MS = 0 and

the sender in either scenario will have (normalized) payo↵s V

⇤ = V

⇤
MS = 1 independent of

�. But as ! increases, the coe�cients k⇤ and k

⇤
MS both increase so that the sender’s payo↵s

V

⇤ and V

⇤
MS both decrease with V

⇤
> V

⇤
MS for all ! and �, as illustrated in the left panel of

Figure 5. Moreover as ! ! 1 we have that without manipulation k

⇤
MS ! 1 so that V ⇤

MS ! 0

but with manipulation k

⇤ ! k(�) < 1 so that in the limit we have a strictly positive di↵erence

with limit

V

⇤(�) =
1� k(�)

1 + k(�)
> 0 (37)
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that is strictly increasing in � since k(�) is strictly decreasing in �.

While both V

⇤ and V

⇤
MS are both strictly decreasing in !, the sender’s gain from ma-

nipulation V

⇤ � V

⇤
MS is non-monotonic in !. In particular, for low ! the sender’s payo↵s

with manipulation decrease more slowly in ! than do the benchmark Morris-Shin payo↵s so

that the sender’s gain from manipulation is increasing for low !. More precisely, for each

� there is a critical point !⇤(�) such that the gain from manipulation is increasing in ! for

all ! < !

⇤(�) and then decreasing in ! for all ! > !

⇤(�), as shown in the right panel of

Figure 5. In short, the sender’s gain from manipulation is large when signals are intrinsically

relatively precise and there is a high preference for coordination. Of course, overall the sender

would always prefer the intrinsic relative precision be low; indeed when ! is very low, there

is negligible additional gain from being able to manipulate precisely because the sender’s

payo↵s are already as high as they can be.

Why is the sender’s gain from information manipulation large when signals are intrinsi-

cally relatively precise and there is a high preference for coordination? In short, the sender’s

gain is large when (i) in the absence of manipulation individuals are highly responsive to their

individual signals, leading the aggregate A to be tightly clustered around ✓, but where also

(ii) in the presence of manipulation individuals are not responsive to their individual signals,

leading the aggregate A to be more highly dispersed around ✓. Now in general (ii) can be

true either because coordination motives are strong or because individual signals are intrinsi-

cally relatively imprecise, but (i) can only be true if individual signals are intrinsically highly

precise. Hence (i) and (ii) can only both be true at the same time if signals are intrinsically

highly precise, say ! ! 1 and coordination motives are strong, say � ! 1. Put di↵erently,

the sender’s gain is large when k

⇤ is substantially less than k

⇤
MS so that with manipulation

receivers respond much more to the common z. And from Proposition 3 we know that k⇤ is

substantially less than k

⇤
MS when ! is high and � is high.

Information manipulation and social coordination. Put di↵erently, there is an inter-

action between the information manipulation e↵ect and the social coordination e↵ect from

the benchmark Morris-Shin setting that can work to give the sender a large gain from ma-

nipulation. To see this, recall that in the Morris-Shin benchmark as ! ! 1 we have k⇤
MS ! 1

for all � 2 (0, 1) — that is, even when there is a very powerful coordination motive, say

� = 0.9, then if signals are su�ciently precise relative to the prior then individual actions

will still respond heavily to their signal despite the strong preference for coordination. In the

Morris-Shin benchmark, this is a terrible outcome for the sender because it means that the re-

ceivers are perfectly coordinated on ✓. With information manipulation, every receiver knows

their signals are less informative than their intrinsic precision warrants, and this makes them

respond less to their signal x
i

(and more to the common z) than they otherwise would. This

would be true even if � = 0 — this is why in Proposition 3 we have lim
�!0 k

⇤ := k(!) < !
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for all ! — but this e↵ect is larger when there is a coordination motive, � > 0, because

then it is not just that each individual responds more to z but also that each individual

knows that each individual is responding more to z. In the presence of this “coordination

multiplier”, individual receivers are, in equilibrium, substantially less responsive to their x
i

and more responsive to z and thus the aggregate A is more dispersed around the true ✓, thus

increasing the sender’s payo↵s. For example, when ! ! 1 and � = 0.9, say, the Morris-Shin

payo↵s are low V

⇤
MS ! 0 and the sender has high gains from manipulation, as shown in the

right panel of Figure 5.

Given that the sender unambiguously benefits from manipulation, it is perhaps not sur-

prising that the receivers are made unambiguously worse o↵.

Receivers made worse o↵. I measure the receivers’ welfare in terms of their ex ante

expected loss

L = �E[(a(x
i

, z)� A(y(✓, z), z))2] + (1� �)E[(a(x
i

, z)� ✓)2] (38)

In the Morris-Shin benchmark with no information manipulation we have y = ✓ and since

a(x
i

, z) = kx

i

+ (1 � k)z and A(✓, z) = k✓ + (1 � k)z we can collect terms and simplify to

obtain the loss function

LMS(k ; !,�) :=
k

2

!�
+ (1� �)

(1� k)2

(1� !)�
, � := ↵ + � (39)

where� := ↵+� is the total intrinsic precision (i.e., the prior precision plus the precision that

signals would have if there was no manipulation; equivalently ↵ = !� and � = (1 � !)�).

Evaluating this at k = k

⇤
MS(!,�) from (30) then gives the equilibrium loss in the case of no

information manipulation, which I denote by L⇤
MS(!,�) := LMS(k⇤

MS(!,�);!,�).

Similarly, with information manipulation we have a(x
i

, z) = kx

i

+ (1� k)z and A(y, z) =

ky+(1�k)z and now y(✓, z) = (k✓+z)/(1+k) so that again collecting terms and simplifying

from (38) we get the loss function

L(k ; !,�) = k

2

!�
+ (1� �)

(1 + k)�2

(1� !)�
(40)

and evaluating this at the k = k

⇤(!,�) implied by (27) then gives the equilibrium loss when

the sender can manipulate information, which I denote by L⇤(!,�) := L(k⇤(!,�);!,�).

We then have:

Proposition 6.

(i) Information manipulation is always payo↵-reducing for receivers, L⇤
> L⇤

MS.

(ii) Both L⇤ and L⇤
MS are (a) strictly increasing in ! for all � 2 (0, 1) and (b) and strictly

decreasing in � for all ! 2 (0, 1).

(iii) The receivers’ expected loss from manipulation, L⇤ � L⇤
MS, is also (a) strictly in-

creasing in ! for all � 2 (0, 1) and (b) and strictly decreasing in � for all ! 2 (0, 1).
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Figure 6: Receivers made worse o↵ by manipulation.

The left panel shows the benchmark receiver loss when there is no information manipulation, L⇤
MS(!,�), as a function of the

intrinsic relative precision ! and the preference for coordination �. The benchmark loss is increasing in ! and decreasing in �.
The right panel shows the additional loss L⇤(!,�)�L⇤

MS(!,�) due to manipulation, which is also increasing in ! and decreasing
in �. The receivers lose most from manipulation when they are intrinsically inclined to rely on their signals, i.e., when ! is high
and � is low, and yet those signals are contaminated by the sender’s manipulation.

This result is illustrated in Figure 6. The left panel shows the Morris-Shin benchmark

receiver loss L⇤
MS as a function of ! for various �. The loss is strictly increasing in ! for

each � 2 (0, 1) and strictly decreasing in � for each ! 2 (0, 1). In the special case of no

coordination motive, � ! 0, we have k

⇤
MS = ! and hence, from (39), the loss collapses to

L⇤
MS = !/�+(1�!)/� = 1/� independent of !. In the special case that receivers care only

about coordination, � ! 1, we have k

⇤
MS = 0 (i.e., actions load completely on the common

z) and hence the loss collapses to L⇤
MS = 0 independent of !. The right panel of Figure 6

shows the additional loss from manipulation, L⇤ �L⇤
MS as a function of ! for various �. The

loss from manipulation is likewise strictly increasing in ! for each � 2 (0, 1) and strictly

decreasing in � for each ! 2 (0, 1). Since the level of the loss with manipulation L⇤ is the

sum of the left and right panels, it too is strictly increasing in ! and strictly decreasing in �.

To summarize, the receivers are always made worse o↵ by the sender’s manipulation and

the extent of their losses are greatest when the intrinsic relative precision of their signals is

high or when there is a weak preference for coordination (i.e., when ! is high and � is low).

In other words, the receivers lose most when the fundamentals of the economy are such that

they are intrinsically inclined to respond heavily to their signals and yet those signals are

contaminated by the sender’s manipulation. Notice, however, that for any fixed ! a higher

� reduces the receivers’ loss from manipulation. This is because with high � receivers care

mostly about aligning their individual action a

i

with the aggregate action A and hence the

presence of information manipulation, which makes them less responsive to their individual
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x

i

and more responsive to their common z, will reduce the dispersion of their a
i

around A and

make the receivers marginally better o↵. To be clear, the receivers’ losses from manipulation

are extremely high when ! ! 1, it is just that for any fixed ! they are marginally better o↵

if � is lower.

7 Conclusions

This paper studies information manipulation in a sender/receiver game with many imper-

fectly coordinated information receivers. The preferences of individual receivers balance a

desire to match their individual action a

i

to an unknown state of the world ✓ with their desire

to match their action to the aggregate action of the population A. The information sender is

informed about ✓ and seeks to prevent the receivers coordinating on it. In an e↵ort to prevent

coordination, the sender takes a costly hidden action that influences the informativeness of

the receivers’ signals on ✓.

This game has a unique linear equilibrium. In that equilibrium, the sender is unable to

introduce any bias into the receivers’ information. Despite this lack of bias, the information

sender always gains from the ability to manipulate information. This is because the sender’s

manipulation endogenously decreases the precision of individual signals making it harder

to coordinate on ✓. The sender’s gain from information manipulation is large when the

fundamentals of the economy are such that (i) in the absence of manipulation receivers would

be highly responsive to their individual x
i

, leading the aggregate A to be tightly clustered

around ✓, but where also (ii) in the presence of manipulation individuals are not responsive

to their individual signals, leading the aggregate A to be more highly dispersed around ✓.

While (ii) could be true either because coordination motives are strong or because individual

signals are intrinsically imprecise, leading receivers to rely more on their prior, (i) can only

be true if individual signals are intrinsically precise. Hence (i) and (ii) can only both be true

at the same time if signals are intrinsically precise and coordination motives are strong. If

the fundamentals of the economy are such that (i) and (ii) are both true, then the sender’s

information manipulation technology makes receivers much less responsive to their signals,

which increases the dispersion of A around ✓ and gives the sender a large increase in payo↵s.

Given that the information manipulation technology is always payo↵-improving for the

sender, it is not too surprising that the manipulation also always makes the receivers worse o↵.

The receivers’ losses from information manipulation are large when signals are intrinsically

relative precise — i.e., when the receivers are fundamentally inclined to respond heavily to

their signals but refrain from doing so given the sender’s manipulation. Finally, while a

strong coordination motive gives the sender large gains from manipulation, for the receivers

a strong coordination motive to some extent mitigates their losses. This is because when

receivers have a strong coordination motive, they mostly care about aligning their individual
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a

i

with the aggregate A. Thus the information manipulation, which makes receivers respond

more to the common z and less to their individual x
i

, thereby reducing the dispersion of their

a

i

around A, has a smaller welfare cost to the receivers than it would have if the receivers

had weak coordination motives.
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